Effects of the Reynolds Number and Prandtl Number on Flow and Temperature Field inside a Square Vented Enclosure having Heat Conducting Block

نویسندگان

  • M. U. Ahammad
  • M. M. K. Chowdhury
  • M. M. Rahman
چکیده

An approach is performed following finite element technique for MHD flow of viscous incompressible and electrically conducting fluid around a heat conducting solid block placed in a ventilated enclosure. A uniform transverse magnetic field is imposed in the opposite direction of flow perpendicular to the right vertical wall. Reynolds number and Prandtl number effects are investigated on flow and thermal field at a wide range of Reynolds (50≤Re≤500) and Prandtl (0.071≤Pr≤7.1) numbers. The expressions for the flow visualizations and temperature distributions inside the studied domain are presented by streamlines and isotherms. Moreover average Nusselt number at the hot wall and average bulk fluid temperature in the cavity are obtained. It is observed that the results focused in this paper are consistent with the physical reality of the flow problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of Magnetic Wire Positions on free convection of Fe3O4-Water nanofluid in a Square Enclosure Utilizing with MAC Algorithm

The augment of heat transfer and fluid of buoyancy-driven flow of Fe3O4-Water nanofluid in a square cavity under the influence of an external magnetic field is studied numerically. Cold temperature is applied on the side (vertical) walls and high temperature is imposed on the bottom wall while the top wall is kept at thermally insulated. The governing non-dimensional differential equations are ...

متن کامل

Using Lattice Boltzmann Method to Investigate the Effects of Porous Media on Heat Transfer from Solid Block inside a Channel

A numerical investigation of forced convection in a channel with hot solid block inside a square porous block mounted on a bottom wall was carried out. The lattice Boltzmann method was applied for numerical simulations. The fluid flow in the porous media was simulated by Brinkman-Forchheimer model. The effects of parameters such as porosity and thermal conductivity ratio over flow pattern and t...

متن کامل

Effects of variations in magnetic Reynolds number on magnetic field distribution in electrically conducting fluid under magnetohydrodynamic natural convection

In this study the effect of magnetic Reynolds number variation on magnetic distribution of natural convection heat transfer in an enclosure is numerically investigated. The geometry is a two dimensional enclosure which the left wall is hot, the right wall is cold and the top and bottom walls are adiabatic. Fluid is molten sodium with Pr=0.01 and natural convection heat transfer for Rayleigh num...

متن کامل

Analytical study of flow field and heat transfer of a non-Newtonian fluid in an axisymmetric channel with a permeable wall

In this study, the momentum and energy equations of laminar flow of a non-Newtonian fluid are solved in an axisymmetric porous channel using the least square and Galerkin methods. The bottom plate is heated by an external hot gas, and a coolant fluid is injected into the channel from the upper plate. The arising nonlinear coupled partial differential equations are reduced to a set of coupled no...

متن کامل

Convection in a Tilted Square Enclosure with Various Boundary Conditions and Having Heat Generating Solid Body at its Center

In this study free convection flow and heat transfer of a fluid inside a tilted square enclosure having heat conducting and generating solid body positioned in the center of the enclosure with various thermal boundary conditions has been investigated numerically. The governing equations are transformed into non-dimensional form and the resulting partial differential equations are solved by Fini...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016